PostScript Hints Miguel Sousa

BlueValues

OtherBlues

BlueValues *Top alignment zones (+ baseline zone)* OtherBlues *Bottom alignment zones*

Alignment zone rules

- Zones cannot overlap
- Minimum distance between zones is 1 unit
- Up to 6 top zones (+ baseline zone)
- Up to 5 bottom zones

ones is 1 unit zone)

FamilyBlues

FamilyOtherBlues

If the difference between a font's zones and its family's zones is less than 1 pixel, then the family alignments will be used instead of the font's own alignments.

Adobe Type 1 Font Format, page 38

BlueValues Top alignment zones OtherBlues Bottom alignment zones FamilyBlues Top alignment family zones FamilyOtherBlues Bottom alignment family zones

BlueFuzz BlueScale BlueShift

BlueFuzz

25 units

BlueFuzz = 1

BlueFuzz Recommended value: zero

BlueScale

25 units

BlueScale

25 units 1 pixel @ 40pt

1000 UPM & 72 ppi

1000 UPM & 72 ppi

Q: What happens to the overshoot for the sizes between 20 and 40pt?

A: It will be displayed, or not, depending on the **BlueScale** value.

$\frac{1}{2 \times MaxZoneSize} \le BlueScale < \frac{1}{MaxZoneSize}$

¹/₂ pixel

1 pixel

3 $MidBlueScale = \frac{1}{4 \times MaxZoneSize}$

$OvershootPointSize = \frac{BlueScale \times 72 \times UPM}{ppi}$

BlueScale Determines when the overshoot becomes visible

BlueShift

25 units

5 units

Ţ

BlueShift =7

5 units

BlueShift =7

BlueShift Default value: **7** font units (1000 UPM font)

BlueFuzz Expands the zones BlueScale Determines when the overshoot becomes visible BlueShift Defines the minimum overshoot distance that can become visible

Standard Stems Vertical Horizontal

Q: Why are Standard Stems important?

A: Because they tell the rasterizer how heavy the font is.

Q: But why does it need to know that?

A: Because at small sizes the rasterizer makes the stems darker.

QWERTY

QWERTY

And that's all Thanks!

